Mathematics : Arithmetic Progression

1) What is Arithmetic Progression?

Ans. : Arithmetic Progression is a progression in which the difference between any two consecutive terms is constant.

Examples

1) $1,2,3,4$
2) $3,7,11$, \qquad
3) $a, a+d, a+2 d$........................[a+(n-1)d]
4) Write the general form of an AP

Ans.: $a,(a+d),(a+2 d),(a+3 d)$ \qquad $[a+(n-1) d]$
3)Write the formula to find the Common Difference in AP

Ans. : $d=a_{2}-a_{1}$ OR $\quad d=a_{3}-a_{2}$ OR $\quad d=a_{n}-a_{(n-1)}$
4) What is a Finite Arithmetic Progression?

Ans. : An AP having finite number of terms is called finite Arithmetic Progression
Examples

1) $1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots, 10$
2) $3,7,11,15,19$
3) $a, a+d, a+2 d \ldots$.
4) What is a Infinite Arithmetic Progression?

Ans. : An AP having infinite number of terms is called Infinite Arithmetic Progression
Examples

1) $2,4,6,8$, \qquad
2) $5,11,17,23,29$ \qquad
3) a, $a+d, a+2 d$ \qquad
4) Write the $n^{\text {th }}$ term of an AP

Ans.: $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
Where $\mathrm{a}=$ first term, $\mathrm{d}=$ Common difference,$\& \mathrm{n}=$ number of terms
7)Last term of the AP is denoted by \qquad or \qquad
Ans. : a_{n} OR L
8) If p and q are the $p^{\text {th }}$ and $q^{\text {th }}$ terms of an AP, Write the formula to find ' d '

Ans. : $d=\frac{a_{p}-a_{q}}{p-q}$
9) Write the formula to find the sum to n-terms of an AP?

Ans.: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
10)Write the formula to find the sum to n-terms of an AP whose first term is ' a ' \& last term is "L" Ans. : $S n=\frac{n}{2}[a+L]$
11) Write the formula to find the sum of natural numbers(positive integers)?

Ans.: $S_{n}=\frac{n(n+1)}{2}$

Ex 1.1

2. Write the first four terms of the AP

(i)where $\mathrm{a}=10$ and $\mathrm{d}=10$

Ans. : First term $a=10$
Second term $\quad a_{2}=a+d=10+10=20$
Third term $\quad a_{3}=a_{2}+d=20+10=30$
Forth term $\quad a_{4}=a_{3}+d=30+10=40$
The first four terms of the AP are 10, 20, 30 and 40
(ii) where $\mathrm{a}=-2$ and $\mathrm{d}=0$

Ans. : First term $a=-2$
Second term $a_{2}=a+d=-2+0=-2$
Third term $\quad a_{3}=a_{2}+d=-2+0=-2$
Forth term $\quad a_{4}=a_{3}+d=-2+0=-2$
The first four terms of the AP are $-2,-2,-2$ and -2
(iii) where $\mathrm{a}=4$ and $\mathrm{d}=-3$

Ans. : First term

$$
a=4
$$

Second term

$$
a_{2}=a+d=4+(-3)=4-3=1
$$

Third term

$$
a_{3}=a_{2}+d=1+(-3)=1-3=-2
$$

Forth term

The first four terms of the AP are 4, 1, -2 and -5
(iv) where $\mathrm{a}=-1$ and $\mathrm{d}=\frac{1}{2}=0.5$

Ans. : First term $a=-1$
Second term

$$
a_{2}=a+d=-1+0.5=-0.5
$$

Third term $\quad a_{3}=a_{2}+d=-0.50+0.5=0$
Forth term $\quad a_{4}=a_{3}+d=0+0.5=0.5$
The first four terms of the AP are $-1,-0.5,0$ and 0.5
(v) where $\mathrm{a}=-1.25$ and $\mathrm{d}=-0.25$

Ans. : First term $a=-1.25$
Second term $\mathrm{a}_{2}=\mathrm{a}+\mathrm{d}=-1.25+(-0.25)=-1.25-0.25=-1.5$
Third term $\quad a_{3}=a_{2}+d=-1.50+(-0.25)=-1.50-0.25=-1.75$
Forth term $\quad a_{4}=a_{3}+d=-1.725+(-0.25)=-1.75-0.25=-2.0$
The first four terms of the AP are $-1.25,-1.5,-1.75$ and 2.0
12) Write the next four terms of the following AP:5,-1,3.7,..............

Ans. : $a=-5$
$d=a_{2}-a_{1}=-1-(-5)=-1+5=4$
Fifth term $\quad a_{5}=a_{4}+d=7+4=11$
Sixth term $\quad a_{6}=a_{5}+d=11+4=15$
Seventh term $\quad a_{7}=a_{6}+d=15+4=19$
Eighth term $\quad \mathrm{a}_{8}=\mathrm{a}_{7}+\mathrm{d}=19+4=23$
The Next four terms of the AP are 11, 15, 19 and 23

Ex 1.1

3. Find the first term and the Common Difference in the following AP's

(i) $3,1,-1,-3$ \qquad
Ans. : $\mathrm{a}=3$,

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=1-3=-2
$$

(ii) $-5,-1,3,7 \ldots \ldots$

Ans. : $a=-5$

$$
\begin{aligned}
\mathrm{d} & =\mathrm{a}_{2}-\mathrm{a}_{1} \\
& =-1-(-5)=-1+5=4
\end{aligned}
$$

(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3} \ldots$

Ans. : $\mathrm{a}=\frac{1}{3}$

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=\frac{5}{3}-\frac{1}{3}=\frac{5-1}{3}=\frac{4}{3}
$$

(iv) $0.6,1.7,2.8,3.9 \ldots \ldots$.

Ans. : $\mathrm{a}=0.6$

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=1.7-0.6=1.1
$$

Ex 1.1

4. Which of the following are APs?

(i)2, 4, 8, 16 \qquad
Ans. :

$$
\begin{aligned}
& a_{2}-a_{1}=4-2=2 \\
& a_{3}-a_{2}=8-4=4 \\
& a_{4}-a_{3}=16-8=8
\end{aligned}
$$

Since the difference between any two consecutive terms are not constant,
Therefore it is not in AP
(v) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2} \ldots \ldots \ldots$

Ans.: $\mathrm{a}_{2}-\mathrm{a}_{1}=3+\sqrt{2}-3=\sqrt{2}$

$$
\begin{aligned}
& a_{3}-a_{2}=3+2 \sqrt{2}-(3+\sqrt{2})=3+2 \sqrt{2}-3-\sqrt{2}=\sqrt{2} \\
& a_{4}-a_{3}=3+3 \sqrt{2}-(3+3 \sqrt{2})=3+3 \sqrt{2}-3-2 \sqrt{2}=\sqrt{2}
\end{aligned}
$$

Since the difference between any two consecutive terms are constant
Therefore it is not in AP
(vii) $0,-4,-8,-12$ \qquad
Ans. : $a_{2}-a_{1}=-4-0=-4$

$$
\begin{aligned}
& a_{3}-a_{2}=-8-(-4)=-8+4=-4 \\
& a_{4}-a_{3}=-12-(-8)=-12+8=-4
\end{aligned}
$$

Since the difference between any two consecutive terms are constant Therefore it is in AP
13) Find the $15^{\text {th }}$ term of the AP

Ans. : $\mathrm{a}_{15}=\mathrm{a}+14 \mathrm{~d}$
14) Find the $10^{\text {th }}$ term of an AP $2,7,12, \ldots \ldots \ldots \ldots . .$.

Ans. : $\mathrm{a}=2$

$$
a_{n}=a+(n-1) d
$$

$$
\begin{aligned}
\mathrm{d} & =\mathrm{a}_{2}-\mathrm{a}_{1} & & \mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d} \\
& =7-2 & & \mathrm{a}_{10}=2+9(5) \\
\mathrm{d} & =5 & & \mathrm{a}_{10}=2+45=47
\end{aligned}
$$

$$
\mathrm{n}=10 \quad \text { The } 10^{\text {th }} \text { term of an } \mathrm{AP} \text { is } 47
$$

$$
\mathrm{a}_{10}=?
$$

15) Find the $30^{\text {th }}$ term of the AP $10,7,4$, \qquad
Ans. : $a=10$

$$
a_{n}=a+(n-1) d
$$

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}
$$

$$
a_{30}=a+29 d
$$

$$
d=7-10=-3
$$

$$
a_{30}=10+29(-3)
$$

$$
\mathrm{n}=30
$$

$$
a_{30}=10-87=-77
$$

$$
a_{30}=?
$$

The $30^{\text {th }}$ term of an AP is -77
16) Find the $11^{\text {th }}$ term of the AP $-3,-\frac{1}{2}, 2 \ldots \ldots \ldots$.

Ans.: -3, -0.5, $2 \ldots \ldots . . .$.

$$
\begin{aligned}
& \mathrm{a}=-3 \\
& \mathrm{~d}=\mathrm{a}_{2}-\mathrm{a}_{1}=-0.5-(-3)=-0.5+3 \\
& d=2.5 \\
& \mathrm{n}=11
\end{aligned}
$$

$a_{n}=a+(n-1) d$
$a_{11}=a+10 d$
$a_{11}=-3+10(2.5)$
$a_{11}=-3+25.0$
$a_{11}=22$

Ya fatahu, Rabbi Zidni ilma

$$
\mathrm{a}_{11}=?
$$

17) Find the $n^{\text {th }}$ term of

Ans. : $a=3$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}$
$\mathrm{d}=7-3=4$
$\mathrm{n}=\mathrm{n}$

AP: 3, 7, 11, 15,
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{a}_{\mathrm{n}}=3+(\mathrm{n}-1)(4)$
$a_{n}=3+4 n-4$
$a_{n}=4 n-1$
$\mathrm{a}_{\mathrm{n}}=$?
18) Which term of the AP : $21,18,15$, \qquad is -81 ?

$$
\begin{aligned}
& \text { Ans. : } \mathrm{a}=21 \\
& \mathrm{~d}=\mathrm{a}_{2}-\mathrm{a}_{1}=18-21=-3 \\
& a_{n}=a+(n-1) d \\
& -81=21+(\mathrm{n}-1)(-3) \\
& \mathrm{n}=\text { ? } \\
& -81-21=(\mathrm{n}-1)(-3) \\
& a_{n}=-81 \\
& -102=(n-1)(-3) \\
& (n-1)=\frac{-102}{-3} \\
& \mathrm{n}-1=34 \\
& n=34+1 \\
& \mathrm{n}=35
\end{aligned}
$$

The 35 th term is -81
19) Check whether 301 is a term of the list of numbers $5,11,17,23$

$$
\begin{array}{lll}
\text { Ans. }: \text { Let } & \mathrm{a}=5 & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\mathrm{~d}=11-5=6 & 301=5+(\mathrm{n}-1)(6) \\
& \mathrm{a}_{\mathrm{n}}=301 & 301=5+6 \mathrm{n}-6 \\
& 301=6 \mathrm{n}-1 \\
& 301+1=6 \mathrm{n} \\
& n=\frac{302}{6} \\
& \mathrm{n}=50.33
\end{array}
$$

Since the value of n is not a natural number
$\therefore 301$ is not a term of the given list of terms
20) Determine the AP whose $3^{\text {rd }}$ term is 5 and the $7^{\text {th }}$ term is 9 .

Ans.: $\mathrm{a}_{3}=\mathrm{a}+2 \mathrm{~d}$
$a_{7}=a+6 d$
$5=\mathrm{a}+2 \mathrm{~d}$

Subtract Eqn.(1) from Eqn.(2)
$a+6 d=9$
$a+2 d=5$
$a+2 d=5$
$a+2(1)=5$
$\frac{(-)(-) \quad(-)}{4 \mathrm{~d}=4}$
$a+2=5$
$\mathrm{a}=3$
$d=1$
The required AP is $3,4,5,6$, \qquad

Ex 1.2

1. (i) In an AP, If $a=7, d=3, n=8$, find a_{n}

Ans. : $a_{n}=a+(n-1) d$

$$
\begin{aligned}
& a_{8}=7+(8-1) 3 \\
& a_{8}=7+7(3) \\
& a_{8}=7+21=28
\end{aligned}
$$

The $8^{\text {th }}$ term of an AP is 28
(ii) In an AP, If $a=-18, n=10, a_{n}=0$, find d

Ans.: $\quad a=-18 \quad a_{n}=a+(n-1) d$
$\mathrm{n}=10 \quad 0=-18+(10-1) \mathrm{d}$
$\mathrm{a}_{\mathrm{n}}=0 \quad 18=9 \mathrm{~d}$
$d=? \quad d=2$
The Cd is 2
(iii) In an AP, If $d=-3, n=18, a_{n}=-5$, find a

Ans.: $\quad d=-3 \quad a_{n}=a+(n-1) d$
$\mathrm{n}=18 \quad-5=\mathrm{a}+(18-1)(-3)$
$\mathrm{a}_{\mathrm{n}}=-5 \quad-5=\mathrm{a}-17(3)$
$\mathrm{a}=? \quad-5=\mathrm{a}-51$

$$
\begin{aligned}
& -5+51=a \\
& a=46
\end{aligned}
$$

The first term of the AP is 46
(iv) In an AP, If $\mathrm{a}=-18.9, \mathrm{~d}=2.5, \mathrm{a}_{\mathrm{n}}=3.6$, find n

Ans. : $\mathrm{a}=-18.9$

$$
\begin{array}{ll}
\mathrm{d}=2.5 & 3.6=-18.9+(\mathrm{n}-1 \\
\mathrm{a}_{\mathrm{n}}=3.6 & 3.6+18.9=(\mathrm{n}-1) \\
\mathrm{n}=? & 22.5=(\mathrm{n}-1)(2.5) \\
& (n-1)=\frac{22.5}{2.5} \\
& \mathrm{n}-1=9 \\
& \mathrm{n}=9+1 \\
& \mathrm{n}=10
\end{array}
$$

There are 10 terms in the AP
(v) In an AP, If $\mathrm{a}=3.5, \mathrm{~d}=0, \mathrm{n}=105$ find a

Ans. : $\mathrm{a}=3.5$

$$
a_{n}=a+(n-1) d
$$

$d=0$
$a_{n}=3.5-(105-1) 0$
$\mathrm{n}=105$
$\mathrm{a}_{\mathrm{n}}=3.5+0$
$\mathrm{a}_{\mathrm{n}}=$?
$a_{n}=3.5$
The $105^{\text {th }}$ term of an the AP is 3.5

Ex 1.2

4. Which term of the AP $3,8,13,18$, is 78 ?

Ans. : $\mathrm{a}=3 \quad \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$

$$
\begin{aligned}
\mathrm{d} & =\mathrm{a}_{2}-\mathrm{a}_{1} & & 78=3+(\mathrm{n}-1)(5 \\
& =8-3 & & 78-3=(\mathrm{n}-1)(5) \\
\mathrm{d} & =5 & & 75=(\mathrm{n}-1)(5) \\
\mathrm{n} & =? & & \mathrm{n}-1=\frac{75}{5}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{n}}=78 & \mathrm{n}-1=15 \\
& \mathrm{n}=15+1 \\
& \mathrm{n}=16
\end{array}
$$

The $16^{\text {th }}$ term is 78
5. (i) Find the number of terms of the AP: 7, 13, 19 . 205?

Ans.: $\mathrm{a}=7$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=13-7=6$
$\mathrm{n}=$?
$\mathrm{a}_{\mathrm{n}}=205$

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& 205=7+(n-1)(6) \\
& 205-7=(n-1)(6) \\
& 198=(n-1)(6) \\
& n-1=\frac{198}{6} \\
& n-1=33 \\
& n=33+1=34
\end{aligned}
$$

The 34 th term is 205
5. (ii) Find the number of term of the AP $18,15 \frac{1}{2}, 13, \ldots \ldots \ldots47$?

Ans. : $\mathrm{a}=18$

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=15.5-18=-2.5
$$

$$
\mathrm{n}=\text { ? }
$$

$$
a_{n}=-47
$$

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& -47=18+(n-1)(-2.5) \\
& -47-18=(n-1)(-2.5) \\
& -65=(n-1)(-2.5) \\
& n-1=\frac{-65}{-2.5} \\
& n-1=26 \\
& n=26+1 \\
& n=27
\end{aligned}
$$

The 27th term is -47
6. Check whether -150 is a term of the AP : $11,8,5,2 \ldots \ldots \ldots$.
Ans. : Let $\quad a=11$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{d}=8-11=-3$
$-150=11+(n-1)(-3)$
$a_{n}=-150$
$-150=11-3 n+3$

$$
\begin{aligned}
& -150-14=3 n \\
& n=\frac{-164}{3} \\
& \mathrm{n}=54.66
\end{aligned}
$$

Since the value of n is not a natural number therefore -150 is not a term of the given list of terms
7. Find the $31^{\text {st }}$ term of the AP whose $11^{\text {th }}$ term is 38 and the 16 th term is 73 .
Ans. :

$$
\begin{array}{ll}
a_{11}=a+10 d & a_{16}=a+15 d \\
38=a+10 d \ldots \ldots \ldots \ldots .(1) & 73=a+15 d \tag{2}
\end{array}
$$

Subtract Eqn.(1) from Eqn.(2)

$$
\begin{aligned}
& \mathfrak{a}+15 d=73 \\
& \mathfrak{a}+10 d=38
\end{aligned}
$$

$(-) \quad(-) \quad(-)$

$$
5 \mathrm{~d}=35
$$

$$
d=7
$$

$$
a+10 d=38
$$

$$
a+10(7)=38
$$

$$
\mathrm{a}=38-70
$$

$$
a=-32
$$

$\mathrm{a}_{31}=\mathrm{a}+30 \mathrm{~d}$
$\mathrm{a}_{31}=-32+30(7)$
$a_{31}=-32+210$
$\mathrm{a}_{31}=178$
\therefore The $31^{\text {st }}$ term is 178
8. An AP consists of 50 terms of which 3 rd term is 12 and the last term is 106 . Find the $29^{\text {th }}$ term?

Ans. : $\mathrm{a}_{3}=\mathrm{a}+2 \mathrm{~d}$

$$
\begin{equation*}
\mathrm{a}_{50}=\mathrm{a}+49 \mathrm{~d} \tag{2}
\end{equation*}
$$

$12=a+2 d \ldots \ldots(1)$
$106=a+49 d$

Subtract Eqn.(1) from Eqn.(2)
$a+49 d=106$
$a+2 d=12$
$(-)(-) \quad(-)$
$47 d=94$
$d=2$
$\mathrm{a}+2 \mathrm{~d}=12$
$a_{29}=a+28 d$
$a+2(2)=12$
$\mathrm{a}_{29}=8+56$
$a+4=12$
$\mathrm{a}_{29}=8+28(2)$
$\mathrm{a}=12-4$
$\mathrm{a}_{29}=64$
$\mathrm{a}=8$
\therefore The $29^{\text {th }}$ term is 64
9. If the 3 rd and $9^{\text {th }}$ terms of an AP are 4 and -8 respectively, which term of this AP is Zero?

Ans.: $\mathrm{a}_{3}=\mathrm{a}+2 \mathrm{~d}$
$4=a+2 d$
$a_{9}=a+8 d$
$-8=a+8 d$

Subtract Eqn.(1) from Eqn.(2)

$$
a=8
$$

$a+8 d=-8$
$a_{n}=a+(n-1) d$
$a+2 d=4$
$0=8+(n-1)(-2)$
$(-)(-) \quad(-)$
$6 d=-12$
$d=-2$
$-8=(n-1)(-2)$
$n-1=\frac{-8}{-2}$
$\mathrm{n}-1=4$
$\mathrm{n}=4+1$
$\mathrm{n}=5$
\therefore The $5^{\text {th }}$ term is zero
10. The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 7 . Find common difference

Ans.: $\mathrm{a}_{17}=\mathrm{a}_{10}+7$

$$
\begin{aligned}
& a+16 d=a+9 d+7 \\
& 16 d-9 d=7 \\
& 7 d=7
\end{aligned}
$$

$$
\mathrm{d}=1 \quad \therefore \text { The common difference is } 1
$$

11. Which term of the AP: $3,15,27,39 \ldots \ldots$ will be 132 more than its 54 th term?

Ans.: 3, 15, 27, 39......

$$
a=3,
$$

$$
d=15-3=12
$$

$$
\begin{aligned}
& a_{n}=a_{54}+132 \\
& \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{a}+53 \mathrm{~d}+132 \\
& (\mathrm{n}-1) \mathrm{d}=53 \mathrm{~d}+132 \\
& (\mathrm{n}-1)(12)=53(12)+132 \\
& 12 \mathrm{n}-12=636+132 \\
& 12 \mathrm{n}-12=768 \\
& 12 \mathrm{n}=768+12 \\
& 12 \mathrm{n}=780 \\
& \mathrm{n}=\frac{780}{12}=65
\end{aligned}
$$

$65^{\text {th }}$ term will be 132 more than its $54^{\text {th }}$ term
12. Two APs have the same common difference. The difference between their $100^{\text {th }}$ terms is 100. What is the difference between their 1000 terms?

Ans. :

$$
\begin{align*}
& {\left[a_{1}\right]_{100}-\left[a_{2}\right]_{100}=100} \\
& a_{1}+99 d-\left[a_{2}+99 d\right]=100 \\
& a_{1}+99 d-a_{2}-99 d=100 \\
& a_{1}-a_{2}=100 \ldots \ldots \ldots(1) \\
& {\left[a_{1}\right]_{1000}-\left[a_{2}\right]_{1000}} \tag{1}\\
& =a_{1}+999 d-\left[a_{2}+999 d\right] \\
& =a_{1}+999 d-a_{2}-999 d \\
& =a_{1}-a_{2}=100
\end{align*}
$$

13. How many three-digit numbers are divisible by 7 ?

Ans.: The three digit numbers which are divisible by 7 are $105,112,119$, .994

a	$=105$		$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
d	$=\mathrm{a}_{2}-\mathrm{a}_{1}$		$994=105+(\mathrm{n}-1)(7)$
	$=112-105$		$994=105+7 \mathrm{n}-7$
$\mathrm{~d}=7$		$994=7 \mathrm{n}+98$	
$\mathrm{n}=?$		$7 \mathrm{n}=994-98$	
$\mathrm{a}_{\mathrm{n}}=994$		$7 \mathrm{n}=896$	
		$n=\frac{896}{7}=128$	

There are 128 three digit numbers
14. How many multiples of 4 lie between $10 \& 250$?

Ans.: $12,16,20, \ldots \ldots$
$\mathrm{a}=12$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=16-12=4$
$\mathrm{n}=$?
$\mathrm{a}_{\mathrm{n}}=248$

$$
4 n=248-8
$$

$$
4 n=240
$$

$$
n=\frac{240}{4}
$$

$$
\mathrm{n}=60
$$

There are 60 numbers
15. For what value of ' n ' are the nth terms of two APs $63,65,67 \ldots \ldots . \& 3,10,17 \ldots . .$. equal?

Ans.: Let

$$
\begin{array}{lll}
\mathrm{a}_{1}=63 & \mathrm{a}_{2}=3 & {\left[\mathrm{a}_{\mathrm{n}}\right]_{1}=\left[\mathrm{a}_{\mathrm{n}}\right]_{2}} \\
\mathrm{~d}_{1}=65-63 & \mathrm{~d}_{2}=10-3 & \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}=\mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2} \\
\mathrm{~d}_{1} & =2 & \mathrm{~d}_{2}==7 \\
& 63+(\mathrm{n}-1) 2=3+(\mathrm{n}-1) 7 \\
& 63+2 \mathrm{n}-2=3+7 \mathrm{n}-7 \\
& 61+2 \mathrm{n}=7 \mathrm{n}-4 \\
& & 61+4=7 \mathrm{n}-2 \mathrm{n} \\
& & 5 \mathrm{n}=65 \\
& & \mathrm{n}=13
\end{array}
$$

16. Determine the AP whose $3^{\text {rd }}$ term is $16 \& 7^{\text {th }}$ term exceeds the 5 th term by 12 ?
Ans.: $\mathrm{a}_{7}=\mathrm{a}_{5}+12$
$a+6 d=a+4 d+12$
$\mathrm{a}_{3}=\mathrm{a}+2 \mathrm{~d}$
$6 d-4 d=12$
$16=a+2 d$
$2 \mathrm{~d}=12$
$16=a+2(6)$
$16-12=a$
$d=6$
$a=4$

The required AP is $4,10,16$. \qquad
17. Find the $20^{\text {th }}$ term from the last term of the AP $3,8,13$, .253

Ans. : Let $a=253$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

$$
\mathrm{d}=\mathrm{a}_{1}-\mathrm{a}_{2}
$$

$$
\mathrm{a}_{20}=\mathrm{a}+19 \mathrm{~d}
$$

$$
d=3-8=-5
$$

$$
\mathrm{a}_{20}=253+19(-5)
$$

$$
\mathrm{n}=20
$$

$$
a_{20}=253-95=158
$$

$$
\mathrm{a}_{\mathrm{n}}=? \quad \text { the } 20^{\text {th }} \text { term from the last term of the AP is } 158
$$

18. The sum of the 4 th and 8 th terms of an AP is 24 and the sum of 6th and 10th terms is 44 . find the first three terms of the AP?

Ans.: $\mathrm{a}_{4}+\mathrm{a}_{8}=24$

$$
a+3 d+a+7 d=24
$$

$$
2 a+10 d=24
$$

\qquad $\div 2$
$a+5 d=12 \ldots \ldots \ldots$ (1)
$a_{6}+a_{10}=44$
$a+5 d+a+9 d=44$
$2 \mathrm{a}+14 \mathrm{~d}=44 \ldots \ldots . \div 2$
$a+7 d=22 \ldots \ldots . .(2)$
Subtract Eqn.(1) from Eqn.(2)
$a+7 d=22$
$a+5 d=12$

$$
\begin{align*}
& a+7 d=22 \\
& a+7(5)=22 \\
& a+35=22 \\
& a=22-35 \\
& a=-13 \tag{-}
\end{align*}
$$

(-) (-)
$2 d=10$
$d=5$
The first three terms are $-13,-8 \&-3$
19. Subba Rao started work in 1995 at an annual salary of Rs. 5000 and received an increment of Rs. 200 each year. In which year did his income reach Rs. 7000?

$$
\begin{array}{ll}
\text { Ans. }: & \mathrm{a}=5000 \\
\mathrm{~d}=200 & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& 7000=5000+(\mathrm{n}-1) 200 \\
\mathrm{a}_{\mathrm{n}}=7000 & 7000=5000+200 \mathrm{n}-200 \\
\mathrm{n}=? & 7000=4800+200 \mathrm{n} \\
& 7000-4800=200 \mathrm{n} \\
& 200 \mathrm{n}=2200 \\
& \mathrm{n}=11
\end{array}
$$

In 2006 he will receive 7000 salary
20. Ramkali saved Rs. 5 in the first week of a year and then increased her weekly saving by Rs.1.75. If in the nth week. her weekly saving become Rs. 20.75. Find n

Ans. : $\mathrm{a}=5$
$\mathrm{d}=1.75$

$$
20.75=5+\left(\mathrm{n}^{0}-1\right)(1.75)
$$

$\mathrm{n}=$?
$a_{n}=20.75$

$$
a_{n}=a+(n-1) d
$$

$$
20.75-5=(\mathrm{n}-1)(1.75)
$$

$$
15.75=(n-1)(1.75)
$$

$$
n-1 \neq \frac{15.75}{1.75}
$$

$$
\mathrm{n}-1 \%=9
$$

$$
n=9+1
$$

$$
n=10
$$

Ex 1.3

I. Find the sum of the following APs

(i) $2,7,12$. \qquad to 10 terms

Ans. : $\mathrm{a}=2$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=7-2=5$
$\mathrm{n}=10$
$\mathrm{S}_{10}=$?

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{10}=\frac{10}{2}[2(2)+(10-1) 5] \\
& \mathrm{S}_{10}=5[4+9(5)] \\
& \mathrm{S}_{10}=5(4+45) \\
& \mathrm{S}_{10}=5(49)=245
\end{aligned}
$$

The sum to 10 terms is 245
(ii) $-37,-33,-29$ \qquad to 12 terms

Ans. : $\mathrm{a}=-37$

$$
d=-33+37=4
$$

$$
\mathrm{n}=12
$$

$$
\mathrm{S}_{12}=?
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{12}=\frac{12}{2}[2(-37)+(12-1)(4)] \\
& \mathrm{S}_{12}=6[-74+11(4)] \\
& \mathrm{S}_{10}=6(-74+44) \\
& \mathrm{S}_{10}=6(-30)=-180
\end{aligned}
$$

The sum to 12 terms is -180
(iii) $0.6,1.7,2.8$,

100 terms
Ans. : $\mathrm{a}=0.6$

$$
S_{n y}=\frac{n}{2}[2 a+(n-1) d]
$$

$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}$
$S_{100}=\frac{100}{2}[2(0.6)+(100-1)(1.1)]$
$=1.7-0.6$
$\mathrm{S}_{100}=50[1.2+99(1.1)]$
$\mathrm{d}=1.1$
$S_{100}=50(1.2+108.9)$
$\mathrm{n}=100$
$S_{100}=50(110.1)=5505$
$\mathrm{S}_{100}=$?
The sum to 100 terms is 5505
(iv) Find the sum of : $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}$, \qquad to 11 terms

Ans. : $a=\frac{1}{15}$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}
$$

$$
S_{n}=\frac{11}{2}\left[2\left(\frac{1}{15}\right)+(11-1)\left(\frac{1}{60}\right)\right]
$$

$$
\begin{array}{ll}
\mathrm{n}=11 & S_{n}=\frac{11}{2}\left[\frac{2}{15}+(10)\left(\frac{1}{60}\right)\right] \\
\mathrm{S}_{11}=? & S_{n}=\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right] \\
S_{11} & =\frac{11}{2}\left[\frac{2(2)+5}{30}\right] \\
S_{11} & =\frac{11}{2} x \frac{9}{30} \\
S_{11} & =\frac{11}{2} x \frac{3}{10}=\frac{33}{20}
\end{array}
$$

$$
\text { The sum to } 11 \text { terms is } \frac{33}{20}
$$

2. Find the sum of :
(i) $7+10 \frac{1}{2}+14$ $+84$

Ans. : $a=7$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=10.5-7=3.5$
$\mathrm{n}=$?
$\mathrm{a}_{\mathrm{n}}=\mathrm{L}=84$
$\mathrm{S}_{\mathrm{n}}=$?
$a_{n}=a+(n-1) d$
$84=7+(n-1)(3.5)$
$84-7=(n-1)(3.5)$
$77=(n-1)(3.5)$
$n-1=\frac{77}{3.5}$

$$
\mathrm{n}-1=22
$$

$$
n=22+1
$$

$$
\mathrm{n}=23
$$

$$
S n=\frac{n}{2}[a+L]
$$

$$
S_{23}=\frac{23}{2}[7+84]
$$

$$
S_{23}=\frac{23}{2}[91]
$$

$$
S_{23}=1046.5
$$

The sum to 23 terms is 1046.5
(ii) $34+32+30+$ \qquad

Ans. : a =0.6

$$
a_{n}=a+(n-1) d
$$

$$
\begin{aligned}
& \mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=32-34=-2 \\
& \mathrm{n}=? \\
& \mathrm{a}_{\mathrm{n}}=1 \\
& \mathrm{~S}_{\mathrm{n}}=?
\end{aligned}
$$

$$
10=34+(n-1)(-2)
$$

$$
10=34-2 n+2
$$

$$
10=36-2 n
$$

$$
10-36=-2 n
$$

$$
-2 n=-26
$$

$$
\mathrm{n}=13
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
S_{13}=\frac{13}{2}[2(34)+(13-1)(-2)
$$

$$
S_{13}=\frac{13}{2}[68+(12)(-2)]
$$

$$
S_{13}=\frac{13}{2}[68 \geqslant 24]
$$

$$
S_{13}=\frac{13}{2}[44]
$$

$$
S_{13}=13 \times 22
$$

$$
S_{13}=286
$$

The sum to 13 terms is 286
(iii) $-5+(-8)+(-11)+\ldots \ldots \ldots \ldots . . .+(-230)$

Ans. : $a=-5$

$$
\begin{aligned}
& \quad \mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=-8-(-5) \\
& =-8+5 \\
& \mathrm{~d}=-3 \\
& \mathrm{n}=? \\
& \mathrm{a}_{\mathrm{n}}=\mathrm{L}=-230 \\
& \mathrm{~S}_{\mathrm{n}}=?
\end{aligned}
$$

$$
-228=-3 n
$$

$$
\mathrm{n}=76
$$

$$
\begin{aligned}
& S n=\frac{n}{2}[a+L] \\
& S_{76}=\frac{76}{2}[-5+(-230)] \\
& \mathrm{S}_{76}=38(-5-230) \\
& \mathrm{S}_{76}=38(-235) \\
& \mathrm{S}_{76}=-8930
\end{aligned}
$$

The sum to 76 terms is -8930
3. (i) In an AP given $\mathrm{a}=5, \mathrm{~d}=3, \mathrm{a}_{\mathrm{n}}=50$, find n and S_{n}

Ans. : $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$50=5+(n-1) 3$
$S_{16}=\frac{16}{2}[2(5)+(16-1)(3)]$
$50=5+3 n-3$
$\mathrm{S}_{16}=8[10+45]$
$50=2+3 n$
$\mathrm{S}_{16}=8[55]$
50-2 = 3n
$S_{16}=440$
$3 n=48$
$\mathrm{n}=16$
3. (ii) In an AP given $a=7, a_{13}=35$, find d and S_{13}

Ans. : $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$35=7+(13-1) d$
$S_{13}=\frac{13}{2}\left[2(7)+(13-1)\left(\frac{7}{3}\right)\right]$
$35-7=12 \mathrm{~d}$
$S_{13}=\frac{13}{2}[14+28]$
$28=12 d$
$S_{13}=\frac{13}{2}[42]$
$\mathrm{d}=\frac{28}{12}=\frac{7}{3}$
$\mathrm{S}_{13}=13 \times 21$
$\mathrm{S}_{13}=273$
3. (iii) In an AP given, $\mathrm{a}_{12}=37, \mathrm{~d}=3$ find a and S_{12}

$$
\mathrm{n}=12, \mathrm{~d}=3, \mathrm{a}_{12}=37
$$

\[

\]

3. (iv) In an AP given, $\mathrm{a}_{3}=15, \mathrm{~S}_{10}=125$ find d and a_{10}

Ans.: $\mathrm{a}_{3}=15$

$$
a+2 d=15 \ldots . . x 2
$$

$$
2 a+4 d=30
$$

$$
\begin{align*}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{10}=\frac{10}{2}[2 a+(10-1) d] \\
& 125=5[2 \mathrm{a}+9 \mathrm{~d}] \tag{1}\\
& \frac{125}{5}=[2 \mathrm{a}+9 \mathrm{~d}] \\
& 25=[2 \mathrm{a}+9 \mathrm{~d}]
\end{align*}
$$

Sub (2) from (1)

$$
2 a+9 d=25 \ldots(2)
$$

$2 a+4 d=30$
$2 a+9 d=25$
$(-)(-) \quad(-)$
$5 \mathrm{~d}=-5$
$d=-1$

$$
a+2 d=15
$$

$$
a+2(-1)=15
$$

$$
a-2=15
$$

$$
a=17
$$

$$
a_{10}=a+9 d
$$

$$
\mathrm{a}_{10}=17+9(-1)
$$

$$
a_{10}=17-9
$$

$$
\mathrm{a}_{10}=8
$$

Therefore the common difference is -1 and the 10 th term is 8
3.(v) In an AP given, $d=5, S_{9}=75$ find a and a_{9}

Ans. : $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
75=\frac{9}{2}[2 a+(9-1)(5)]
$$

$$
75 \times 2=9[2 a+40]
$$

$$
150=18 a+360
$$

$$
a_{9}=a+8 d
$$

$$
150-360=18 a
$$

$$
a_{9}=\frac{-35}{3}+8(5)
$$

$$
18 a=-210
$$

$$
a_{9}=\frac{-35}{3}+40
$$

$$
a=\frac{-210}{18}
$$

$$
a_{9}=\frac{-35+120}{3}
$$

$$
a=\frac{-35}{3}
$$

$$
\mathrm{a}_{9}=\frac{85}{3}
$$

3. (vi) In an AP given, $a=2, d=8$ and $S_{n}=90$ find n and a_{n}
Ans: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$a_{5}=a+4 d$
$90=\frac{n}{2}[2(2)+(n-1)(8)]$
$a_{5}=2+4(8)$
$90=\frac{n}{2} \times 2[2+(n-1)(4)]$

$$
a_{5}=2+32
$$

$90=\mathrm{n}[2+4 \mathrm{n}-4]$
$a_{5}=34$
$90=\mathrm{n}[4 \mathrm{n}-2]$
$90=4 n^{2}-2 n$ \qquad $(\div 2)$
$45=2 \mathrm{n}^{2}-\mathrm{n}$
$2 \mathrm{n}^{2}-\mathrm{n}-45=0$
$2 n^{2}-10 n+9 n-45=0$
$2 \mathrm{n}(\mathrm{n}-5)+9(\mathrm{n}-5)=0$
$(\mathrm{n}-5)(2 \mathrm{n}+9)=0$

$(n-5)=0$ or $(2 n+9)=0$
$\mathrm{n}=5$ or $\mathrm{n}=\frac{-9}{2}$
3. (vii) In an AP given, $a=8, a_{n}=62 \& S_{n}=210$, find n and d

Ans. : $\mathrm{a}_{\mathrm{n}}=62$
$a+(n-1) d=62$
$8+(\mathrm{n}-1) \mathrm{d}=62$
$(n-1) d=54 \ldots .(1)$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& 210=\frac{n}{2}[2(8)+(n-1) d] \\
& 420=\mathrm{n}[16+54] \\
& 420=\mathrm{n}[70] \\
& \mathrm{n}=6
\end{aligned}
$$

But

$$
(\mathrm{n}-1) \mathrm{d}=54
$$

$$
(6-1) \mathrm{d}=54
$$

$$
\mathrm{d}=\frac{54}{5}
$$

3.(viii)In an AP given, $\mathrm{a}_{\mathrm{n}}=4, \mathrm{~d}=2, \& \mathrm{~S}_{\mathrm{n}}=-14$ find n and a

Ans. : $\mathrm{a}_{\mathrm{n}}=4$

$$
\begin{align*}
& a+(n-1) d=4 \\
& a+(n-1) 2=4 \\
& a+2 n-2=4 \\
& a+2 n=4+2 \\
& a=6-2 n \\
& a+2 n=6 \ldots .(1) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& -14=\frac{n}{2}[2 a+(n-1)(2)] \\
& -28=\mathrm{n}[2(6-2 \mathrm{n})+(\mathrm{n}-1) 2] \\
& -28=\mathrm{n}[12-4 \mathrm{n}+2 \mathrm{n}-2] \\
& -28=\mathrm{n}[-2 \mathrm{n}+10] \\
& -28=-2 \mathrm{n}^{2}+10 \mathrm{n} \\
& 2 \mathrm{n}^{2}-10 \mathrm{n}-28=0 \ldots \ldots(\div 2) \\
& \mathrm{n}^{2}-5 \mathrm{n}-14=0 \\
& \mathrm{n}^{2}-7 \mathrm{n}+2 \mathrm{n}-14=0 \\
& \mathrm{n}(\mathrm{n}-7)+2(\mathrm{n}-7)=0 \\
& (\mathrm{n}-7)=0 \text { or } \mathrm{n}+2=0 \\
& \mathrm{n}=7 \text { or } \mathrm{n}=-2
\end{aligned}
$$

But $\quad a=6-2 n$

$$
a=6-2(6)
$$

$$
a=6-12
$$

$$
a=-8
$$

3. (ix) In an AP given, $\mathrm{a}=3, \mathrm{n}=8$ and $\mathrm{S}_{\mathrm{n}}=192$ find d

Ans. : $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
& 192=\frac{8}{2}[2(3)+(8-1) d] \\
& 192=4[6+7 \mathrm{~d}] \\
& \frac{192}{4}=[6+7 \mathrm{~d}] \\
& 48=6+7 \mathrm{~d} \\
& 48-6=7 \mathrm{~d} \\
& 7 \mathrm{~d}=42 \\
& \mathrm{~d}=6
\end{aligned}
$$

3. (x) In an AP given, $\mathrm{L}=28$, and $\mathrm{S}_{\mathrm{n}}=144$ and there are total 9 terms. Find a

Ans. : $S_{n}=\frac{n}{2}[a+L]$
$144=\frac{9}{2}[a+28]$
$288=9[a+28]$
$\frac{288}{9}=[\mathrm{a}+28]$
$a+28=32$
$\mathrm{a}=32-28$
$\mathrm{a}=4$
4. How many term of the AP : $9,17,25$. \qquad must be taken to give a sum of 636 ?

Ans.: $\mathrm{a}=9$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}$
$636=\frac{n}{2}[2(9)+(n-1)(8)]$
$\mathrm{d}=17-9=8$
$636=\frac{n}{2} x 2[(9)+(n-1)(4)]$
$\mathrm{n}=$?
$636=\mathrm{n}[9+4 \mathrm{n}-4]$
$S_{n}=636$
$636=n[4 n+5]$

$$
\begin{aligned}
& 636=4 n^{2}+5 n \\
& 4 n^{2}+5 n-636=0 \\
& 4 n^{2}+53 n-48 n-636=0 \\
& n[4 n+53]-12[4 n+53]=0 \\
& {[4 n+53][n-12]=0} \\
& 4 n+53=0 \quad \& n-12=0 \\
& 4 n=-53 \quad \& \quad n=12 \\
& n=-\frac{53}{4} \quad \& \quad n=12
\end{aligned}
$$

There are 12 terms in the series
5. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and common difference?

Ans.: $\quad a=5$
$\mathrm{d}=$?
$\mathrm{n}=$?
$a_{n}=L=45$
$\mathrm{S}_{\mathrm{n}}=400$
$45=5+(n-1) d$
45-5 = (n-1)d
$(\mathrm{n}-1) \mathrm{d}=40$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$400=\frac{n}{2}[2(5)+(n-1) d]$
$800=\mathrm{n}[10+40]$
$800=\mathrm{n}$ [50]
$\mathrm{n}=16$
But
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$a_{16}=a+15 d$
$45=5+15 d$
$15 \mathrm{~d}=40$
$45-5=15 d$
$d=\frac{40}{15}=\frac{8}{3}$
6. The first and the last term of an AP are 17 and 350 respectively. If common difference is 9 .

How many terms are there and what is their sum?
Ans.: $\mathrm{a}=17$

$$
\mathrm{d}=9
$$

$$
\mathrm{n}=\text { ? }
$$

$$
\mathrm{S}_{\mathrm{n}}=\text { ? }
$$

$$
a_{n}(L)=350
$$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& 350=17+(\mathrm{n}-1) 9 \\
& 350=17+9 \mathrm{n}-9 \\
& 350=8+9 \mathrm{n} \\
& 350-8=9 \mathrm{n} \\
& 9 \mathrm{n}=342 \\
& \mathrm{n}=\frac{342}{9} \\
& \mathrm{n}=38 \\
& S_{n}=\frac{n}{2}[a+L] \\
& S_{38}=\frac{38}{2}[17+350] \\
& \mathrm{S}_{38}=19(367) \\
& \mathrm{S}_{38}=6973
\end{aligned}
$$

7. Find the sum of first 22 terms of an AP in which $d=7$ and 22 nd term is 149

Ans. : $\mathrm{d}=7$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
a_{22}=149
$$

$$
S_{22}=\frac{22}{2}[2(2)+(22-1)(7)]
$$

$$
a+21 d=149
$$

$$
\mathrm{S}_{22}=11[4+147]
$$

$$
a+21(7)=149
$$

$$
\mathrm{S}_{22}=11[151]
$$

$$
a+21(7)=149
$$

$$
S_{22}=1661
$$

$$
a+147=149
$$

$$
a=149-147
$$

$$
a=2
$$

8. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectivley

Ans.: $a_{2}=14$

$$
a_{3}=18
$$

$$
\mathrm{d}=\mathrm{a}_{3}-\mathrm{a}_{2}
$$

$$
=18-14
$$

$$
d=4 \quad a=10
$$

$$
\mathrm{S}_{51}=?
$$

$$
\begin{aligned}
& \mathrm{a}_{2}=14 \\
& \mathrm{a}+\mathrm{d}=14 \\
& \mathrm{a}+4=14 \\
& \mathrm{a}=14-4 \\
& \mathrm{a}=10 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{51}=\frac{51}{2}[2(10)+(51-1)(4)] \\
& S_{51}=\frac{51}{2}[20+(50)(4)] \\
& S_{51}=\frac{51}{2}[20+200] \\
& S_{51}=\frac{51}{2}[220] \\
& \mathrm{S}_{51}=51 \times 110=5610
\end{aligned}
$$

9. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 . Find the sum of first n terms.

Ans. : $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{7}=\frac{7}{2}[2 a+(7-1) d]$
$S_{17}=\frac{17}{2}[2 a+(17-1) d]$
$49=\frac{7}{2}[2 a+6 d]$
$\frac{49 \times 2}{7}=[2 a+6 d]$
$14=2 a+6 d$

Subtract Eqn.(1) from Eqn.(2)
$2 \mathrm{a}+16 \mathrm{~d}=34$
$2 \mathrm{a}+6 \mathrm{~d}=14$
$(-) \quad(-) \quad(-)$

$$
\begin{gathered}
10 d=20 \\
d=2
\end{gathered}
$$

$$
\begin{array}{ll}
2 \mathrm{a}+6 \mathrm{~d}=14 & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
2 \mathrm{a}+6(2)=14 & S_{n}=\frac{n}{2}[2(1)+(n-1) 2] \\
2 \mathrm{a}+12=14 & S_{n}=\frac{n}{2}[2+2 n-2] \\
2 \mathrm{a}=14-12 & S_{n}=\frac{n}{2}[2 n] \\
2 \mathrm{a}=2 & \mathrm{~S}_{\mathrm{n}}=\mathrm{n}^{2} \\
\mathrm{a}=1 &
\end{array}
$$

10. (i) Show that $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots . . a_{n}$. form an $A P$ where a_{n} is defined as $3+4 n \&$ also. find the sum of thefirst 15 terms?

Ans. : $\mathrm{a}_{\mathrm{n}}=3+4 \mathrm{n}$

$$
a_{1}=3+4(1)=3+4=7
$$

$$
a_{2}=3+4(2)=3+8=11
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{15}=\frac{15}{2}[2(7)+(15-1)(4)] \\
& S_{15}=\frac{15}{2}[14+14(4)] \\
& S_{15}=\frac{15}{2}[14+56] \\
& S_{15}=\frac{15}{2}[70] \\
& \mathrm{S}_{15}=15 \times 35 \\
& \mathrm{~S}_{15}=525
\end{aligned}
$$

Sum to 15 terms is 525
10. (ii)Show that $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots . a_{n} \ldots$. form an AP where a_{n} is defined as $9-5 n$ and alose find the sum of thefirst 15 terms?

Ans.: $a_{n}=9-5 n$

$$
\begin{gathered}
a_{1}=9-5(1)=9-5=4 \\
a_{2}=9-5(2)=9-10=-1 \\
d=a_{2}-a_{1}=-1-4=-5
\end{gathered}
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{15}=\frac{15}{2}[2(4)+(15-1)(-5)] \\
& S_{15}=\frac{15}{2}[8+14(-5)] \\
& S_{15}=\frac{15}{2}[8-70] \\
& S_{15}=\frac{15}{2}[-62] \\
& \mathrm{S}_{15}=15 \mathrm{x}-31 \\
& \mathrm{~S}_{15}=-465
\end{aligned}
$$

11. If the sum of the first n terms of an AP is $4 n-n^{2}$, what is the first term? What is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10th and nth term?

Ans. : $\mathrm{S}_{\mathrm{n}}=4 \mathrm{n}-\mathrm{n}^{2}$

$$
S_{2}=4(2)-2^{2}=8-4=4
$$

$$
\begin{aligned}
& a_{10}=a+9 d \\
& a_{10}=3+9(- \\
& a_{10}=3-18 \\
& a_{10}=-15
\end{aligned}
$$

$$
S_{1}=4(1)-1^{2}=4-1=3 \quad a_{10}=3+9(-2)
$$

$$
\mathrm{a}=\mathrm{S}_{1}=3
$$

$$
\mathrm{S}_{2}=4
$$

$$
a_{1}+a_{2}=4
$$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

$$
3+\mathrm{a}_{2}=4
$$

$$
a_{n}=3+(n-1)(-2)
$$

$$
a_{2}=4-3
$$

$$
a_{n}=3-2 n+2
$$

$$
\mathrm{a}_{2}=1
$$

$$
\mathrm{a}_{\mathrm{n}}=5-2 \mathrm{n}
$$

$$
\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=1-3=-2
$$

$$
a_{3}=a_{2}+d=1+(-2)=-1
$$

12. Find the sum of the first 40 positive integers divisible by 6

Ans.: 6+12+18+ \qquad
$\mathrm{a}=6, \mathrm{n}=40, \quad \mathrm{~S}_{\mathrm{n}}=$?
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=12-6=6$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{40}=\frac{40}{2}[2(6)+(40-1)(6)] \\
& \mathrm{S}_{40}=20[12+39(6)] \\
& \mathrm{S}_{40}=20[12+234] \\
& \mathrm{S}_{40}=20[246] \\
& \mathrm{S}_{40}=4920
\end{aligned}
$$

13. Find the sum of the first 15 multiples of 8

Ans. : $8+16+24+$ \qquad

$$
\begin{array}{rlrl}
\mathrm{a} & =8 & & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\mathrm{d} & =\mathrm{a}_{2}-\mathrm{a}_{1} & & S_{15}=\frac{15}{2}[2(8)+(15-1)(8)] \\
& =16-8 & & S_{15}=\frac{15}{2}[16+14(8)] \\
\mathrm{d} & =8 & & S_{15}=\frac{15}{2}[16+112] \\
\mathrm{n} & =15 & & S_{15}=\frac{15}{2}[128] \\
\mathrm{S}_{\mathrm{n}}=? & & \mathrm{~S}_{15}=15 \times 64=960
\end{array}
$$

14. Find the sum of the odd numbers between 0 and 50

Ans. : $1+3+5+$ \qquad $+49$

$$
\begin{array}{ll}
\mathrm{a}=1 & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\mathrm{~d}=\mathrm{a}_{2}-\mathrm{a}_{1} & 49=1+(\mathrm{n}-1) 2 \\
=3-1=2 & 49=1+2 \mathrm{n}-2 \\
\mathrm{n}=? & 49=2 \mathrm{n}-1 \\
\mathrm{a}_{\mathrm{n}}=49 & 2 \mathrm{n}=49+1 \\
\mathrm{~S}_{\mathrm{n}}=? & 2 \mathrm{n}=50 \\
& \mathrm{n}=25 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d
\end{array}
$$

$$
\begin{aligned}
& S_{25}=\frac{25}{2}[2(1)+(25-1) 2 \\
& S_{25}=\frac{25}{2}[2+50-2] \\
& S_{25}=\frac{25}{2}[50] \\
& \mathrm{S}_{25}=25 \times 25 \\
& \mathrm{~S}_{25}=625
\end{aligned}
$$

Sum of odd numbers between 0 and 50 is 625
15. A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows : Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day etc. the penalty for each succeeding day being Rs. 50 more than for the precceding day. How much money the contractor has to pay as penalty. if he has delayed the work for 30 days? Ans. :Ans. : 200+250+300+.

$$
\mathrm{d}=250-200
$$

$$
\mathrm{d}=50
$$

$$
\begin{aligned}
& +\ldots \ldots . . . \\
& S_{n}=\frac{n}{30}\left[2 a_{5}+(n-1) d\right] \\
& S_{30}=\frac{30}{2}[2(200)+(30-1)(50)] \\
& S_{30}=15[400+29(50)] \\
& S_{30}=15[400+1450] \\
& S_{30}=15[1850] \\
& S_{30}=27750
\end{aligned}
$$

$\mathrm{a}=200$

$$
\mathrm{n}=30
$$

$$
\mathrm{S}_{30}=? \quad \mathrm{~S}_{30}=15[1850]
$$

Contractor has to pay Rs. 27, 750
16. A sum of Rs. 700 is to used to give seven cash prizes to students of a school for th e i r overall academic performance. If each prize is Rs. 20 less than its precding prize, find the value of each of the prize?

Ans.: $\mathrm{a}=? \quad \mathrm{~d}=-20 \mathrm{n}=7 \quad \mathrm{~S}_{\mathrm{n}}=700$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& 700=\frac{7}{2}[2 a+(7-1)(-20)] \\
& 200=2 \mathrm{a}-120
\end{aligned}
$$

$$
\begin{aligned}
& 700=\frac{7}{2}[2 a+(6)(-20)] \\
& 200+120=2 \mathrm{a} \\
& \frac{700 x 2}{7}=[2 a-120] \\
& 2 \mathrm{a}=320 \\
& \mathrm{a}=160
\end{aligned}
$$

The Seven prizes are $160,140,120,100,80,60 \& 40$
17. In a school,students thought of palnting trees in and around the school to reduce air pollution. It was decided that the number iof trees, that each section of each class will plant,will be the same as the class, in which they are studing e.g. a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?

Ans. : $3[1+2+3+$. \qquad .+12]

$$
\begin{aligned}
& =3 \mathrm{~S}_{12} \\
& =3 \times 6 \times 13 \\
& =3 \times \frac{12(12+1)}{2}=234
\end{aligned}
$$

Total number of trees planted 234
18. A Spiral is made up of successive semicircles with centres alternately at A and B starting with centre at A of radii $0.5 \mathrm{~cm}, 1.0 \mathrm{~cm} .1 .5 \mathrm{~cm}, 2.0 \mathrm{~cm} \ldots$. What is the total length fo such a spiral made up of 13 consecutive semicirlces? (Take $\pi=\frac{22}{7}$)
Ans.: $0.5(\pi)+1.0(\pi)+1.5(\pi)+2.5(\pi)+\ldots+6.5(\pi)$

$$
\begin{array}{ll}
=(\pi)(0.5)(1+2+3+\ldots \ldots \ldots \ldots \ldots+13) \\
\mathrm{a}=1 & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\mathrm{d}=2-1=1 & S_{13}=\frac{13}{2}[2(1)+(13-1)(1)] \\
\mathrm{n}=13 & S_{13}=\frac{13}{2}[2+12] \\
\mathrm{S}_{13}=? & S_{13}=\frac{13}{2}[14] \\
& \mathrm{S}_{13}=13 \times 7=91
\end{array}
$$

The total length fo such a spiral made up of 13 consecutive semicirlces is

$$
=\frac{22}{7} \times \frac{1}{2} \times S_{13}=\frac{11}{7} \times 91=11 \times 13=143
$$

19. 200 logs are stacked in the floowing manner : 20 logs in the botton row. 19 in the next row, 18 in the row next to it and so on. In how many rows are the 200 logs placed and how many logs are in the top row.?

Ans. : $\mathrm{a}=20$

$$
d=-1
$$

$$
\mathrm{n}=?
$$

$$
\mathrm{S}_{\mathrm{n}}=200
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& 200=\frac{n}{2}[2(20)+(n-1)(-1) \\
& 200 \times 2=n[40-n+1] \\
& 400=n[-\mathrm{n}+41] \\
& 400=-n^{2}+41 \mathrm{n} \\
& \mathrm{n}^{2}-41 \mathrm{n}+400=0 \\
& \mathrm{n}^{2}-16 \mathrm{n}-25 \mathrm{n}+400=0 \\
& \mathrm{n}(\mathrm{n}-16)-25(\mathrm{n}-16)=0 \\
& (\mathrm{n}-16)(\mathrm{n}-25)=0 \\
& \mathrm{n}-16=0 \quad \text { or } \mathrm{n}-25=0 \\
& \mathrm{n}=16 \text { or } \mathrm{n}=25 \\
& \text { If } \mathrm{n}=16 \\
& \mathrm{a}_{16}=\mathrm{a}+15 \mathrm{~d} \\
& \mathrm{a}_{\mathrm{n}}=20+15(-1) \\
& \mathrm{a}_{\mathrm{n}}=20-15=5
\end{aligned}
$$

Therefore number of rows is 16 and first row contains 5 logs

