Khidwai English School

7th std

Integers part 2

Multiplication of integers

$$+ \times + = +$$

$$+ \times - = -$$

Multiplication of a positive and negative integer

While multiplying a positive integer and a negative integer

We multiply them as a whole number and put in minus sign

before the productWe thus get a negative integer..

$$a \times (-b) = (-a) \times b = -ab$$

Example
$$4 \times -8 = -32$$

$$3 \times -7 = -21$$

Multiplication of two negative integer

The product of two negative integer is a positive integer We multiply the two negative integers as whole numbers and put the positive sign before the product

$$(-a)\times(-b)=+ab$$

Example -
$$10 \times -12 = 120$$

$$-5 \times -6 = +30$$

Product of three or more negative integers

*The product of two negative integers is a positive integer

Ex:.
$$-4 \times -3$$

*The product of three negative integers is a negative integer

Example:-

$$-4 \times -3 \times -2$$

$$=+12\times-2$$

*The product of four negative integers is a positive integer

Example

$$-4 \times -3 \times -2 \times -1$$

$$=+12\times+2$$

We find that if the number of negative integers in a product is <u>even</u>

Then the product is a <u>positive</u> integer if the number of negative integers in a product is <u>odd</u> then the product is a <u>negative</u> integers

I solve the problem

a)
$$-3 \times -9$$
 b) $+6 \times +2$. c) $+7 \times -5$
= $+27$. = $+12$. -35

d)
$$+9 \times -10$$
 e) $-5 \times -2 \times -3$
= -90 . = $+10 \times -3$
= -30

Properties of multiplication of integers

Closure under multiplication

The product of 2 integers is again an integer so we can say that integers are closed under multiplication.

In general ax b is an integer, for all integers a and b

Example:-

$$-2 \times -5 = +10$$

$$+3 \times +9 = +27$$

$$-12 \times +3 = -36$$

Commutative of multiplication

multiplication is commutative for integers that is a x b = b x a for any integers a and b

In general for any two integers a and b

$$a \times b = b \times a$$

Example:-

$$3 \times 4 \text{ or } 4 \times 3 = 12$$

$$-5 \times -2 \text{ or } -2 \times -5 = +10$$

$$+6 \times -3 \text{ or } -3 \times +6 = -18$$

*Multiplication by zero (additive identity)

any whole number when multiplied by zero gives zero In general for any integer a

$$a \times 0 = 0 \times a = 0$$

Example

$$-3\times0=0, -9\times0=0, 0\times100=0$$

Multiplicative identity

integer 1 is multiplicative identity that is $1 \times a = a \times a$

1 = a for any integer a

Example: $4 \times 1 = 4,125 \times 1 = 125$

When we multiply -1 to any number $5 \times -1 = -5$, we get additive inverse of an integer a when we multiply-1 to a therefore $a \times -1 = -1 \times a = -a$

*Associativity property

The product of three integers does not depend upon the grouping of integers and this is called the associative property for multiplication integers

In general any three integers a b and C

$$(a \times b) \times c = a \times (b \times c)$$

Example-3,-2 and 5

we get the same answer in both the cases

Distributive property

illntegers are distributive under addition and multiplication that is a ×b+c=a×b+a×c for any three integers a b and C

Example

I Solve the problem

$$\bullet -15 \times 0 = 0$$

$$\bullet$$
 -21 × -3 = +63

$$\bullet$$
 +6 × -9=-54

II Find the product using suitable properties

$$=+6 \times 5 = -3 \times -10$$

$$e)(+7 \times -6) \times 3 = +7 \times (-6 \times 3)$$

$$= -42 \times 3$$
 $= 7 \times (-18)$

Division of integers

Division is the inverse operation of multiplication

$$3 \times 5 = 15$$
 so $15 \div 5 = 3$ and $15 \div 3 = 5$

* We divide a negative integer by a positive integer We divide them as whole numbers and then put a minus sign (-) before the quotient

*We divide a positive integer by a negative integer we first divide them as whole numbers and then put a minus sign before the quotient

In general for any two positive integers a and b

* any integer divided by zero is meaningless and 0 divided by an integer other than zero is equal to zero therefore For any integer a,

$$a \div 0$$
 is not defined but $0 \div a = 0$

* When we divide a whole number by 1 it gives the same whole number

Fill in the blanks

Answers

•